

Accounting for observer dependence in double-observer distance sampling.

Darryl I. MacKenzie

Background

Background

Modelling Approach

Hector's dolphins

Comments

- Non-independent sightings → bias abundance estimates

Background

Background

Modelling Approach

Hector's dolphins

Comments

- Non-independent sightings → bias abundance estimates
- Previous approaches:
 - Use CDS on sightings by either observer, and MR to adjust $p.(0)$
e.g., Borchers et al. 1998, Laake 1999
 - Model p_{12} as $\delta p_1 p_2$
e.g., Buckland et al. 2010

Conceptual model

Background

Modelling Approach

Hector's dolphins

Comments

- Define detection probability modelled as:

$$\text{logit}(p_{ij}|y_i, \mathbf{x}_i, z_{ik}) = f_j(\boldsymbol{\beta}_j|y_i, \mathbf{x}_i) + g(\boldsymbol{\alpha}|y_i, \mathbf{x}_i)z_{ik}$$

- z_{ij} = group i sighted by observer j
 $\sim \text{Bern}(p_{ij})$
- y_i = distance to group i
- \mathbf{x}_i = other covariates

Dependence structures

Background

Modelling
Approach

Hector's dolphins

Comments

Full Independence: $g(\boldsymbol{\alpha}|y_i, \mathbf{x}_i) = 0$

Constant Dependence: $g(\boldsymbol{\alpha}|y_i, \mathbf{x}_i) = \alpha_0$

Point Independence: $g(\boldsymbol{\alpha}|y_i, \mathbf{x}_i) = \alpha_1 y_i$

Limiting Independence: $g(\boldsymbol{\alpha}|y_i, \mathbf{x}_i) = \alpha_0 + \alpha_1 y_i$

Hector's dolphins

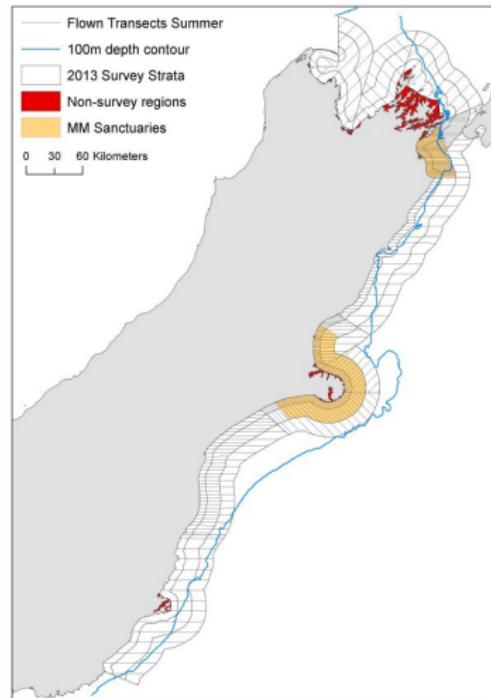
Background

Modelling
Approach

Hector's dolphins

Comments

- Line transect surveys conducted along east coast of South Island in 2013

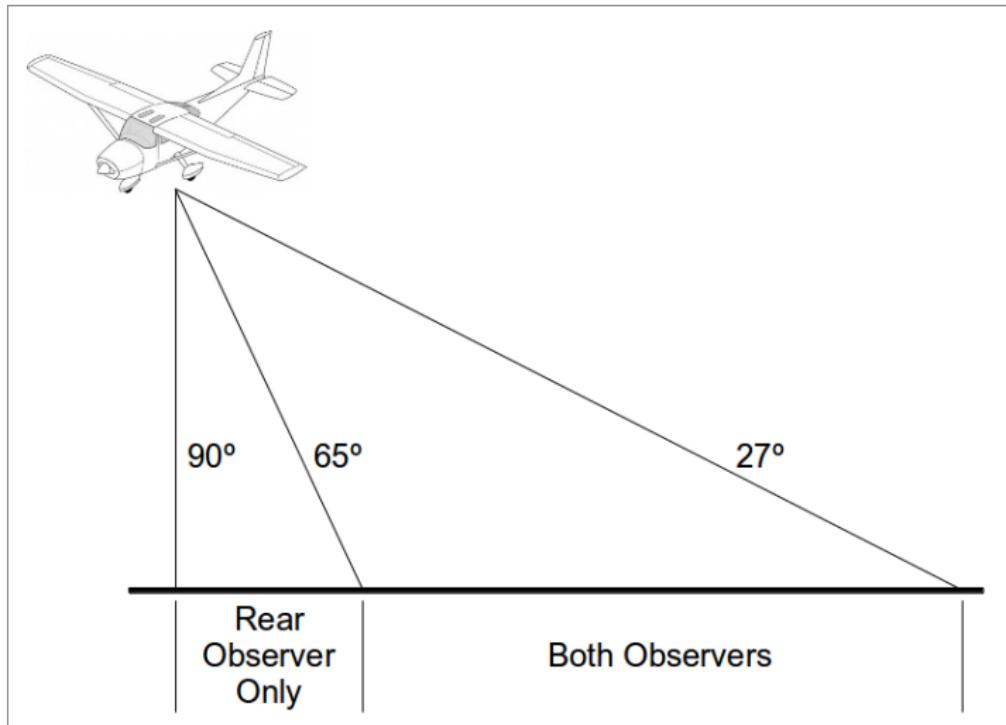

Hector's dolphins

Background

Modelling
Approach

Hector's dolphins

Comments


Hector's dolphins

Background

Modelling
Approach

Hector's dolphins

Comments

Hector's dolphins

Background

Modelling Approach

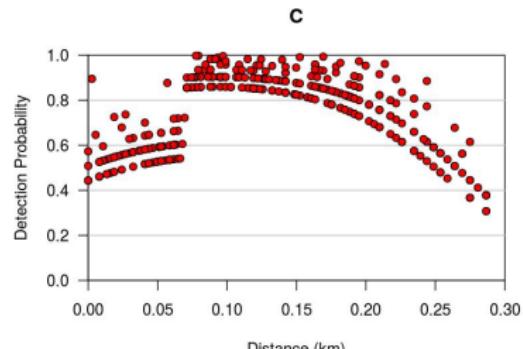
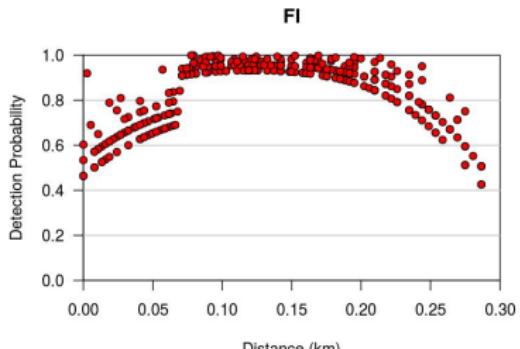
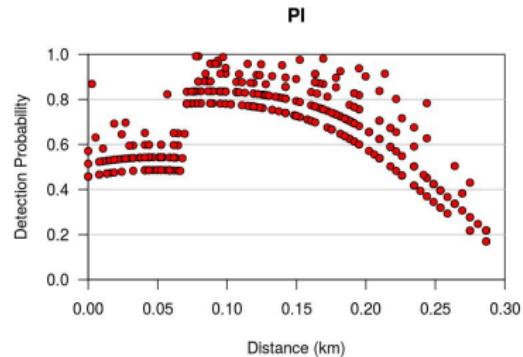
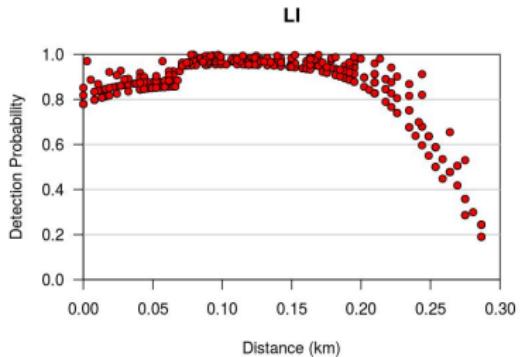
Hector's dolphins

Comments

- Example results: models with quadratic distance and group size effects

Model	ΔAIC	K	$-2I$	\hat{N}_C	SE	$\hat{\alpha}_0$	$\hat{\alpha}_1$ (km)
LI	0.00	6	472.95	967	41	-3.01	18.39
PI	4.05	5	479.01	1,233	118		9.7
FI	21.96	4	498.91	970	36		
C	22.14	5	497.09	1,086	105	0.91	

\hat{N}_C is estimate of available dolphins within survey strip width, and not total abundance.





Hector's dolphins

Background

Modelling Approach

Hector's dolphins

Comments

Final comments

Background

Modelling
Approach

Hector's dolphins

Comments

- Assumed dependence structure can effect abundance estimates

Final comments

Background

Modelling
Approach

Hector's dolphins

Comments

- Assumed dependence structure can effect abundance estimates
- Intuitively simple idea

Final comments

Background

Modelling
Approach

Hector's dolphins

Comments

- Assumed dependence structure can effect abundance estimates
- Intuitively simple idea
- Leads to multinomial cell probabilities

Final comments

Background

Modelling
Approach

Hector's dolphins

Comments

- Alternative link functions?

Final comments

Background

Modelling
Approach

Hector's dolphins

Comments

- Alternative link functions?
- Extension to >2 observers?

Final comments

Background

Modelling
Approach

Hector's dolphins

Comments

- Alternative link functions?
- Extension to >2 observers?
- Other applications?